Advanced Diamond Technologies’ (ADT) NaDiaProbes are changing the field for Atomic Force Microscopy (AFM). NaDiaProbes are made entirely of diamond — both the tip and cantilever—in a monolithic process, and this leverages the beneficial attributes of diamond for use in commercial atomic force microscopes. Diamond has long been recognized as the optimal material for scanning probe microscope applications, but until now the available technology—diamond-coated cantilevers or mounted pieces of diamond—has been unable to meet industry requirements for sharpness, reproducibility and affordability.

Outperforms Si, SiN Probes and Diamond Coated Probes

Problems associated with silicon (Si) and silicon nitride (SiN) probes such as wear resistance and reactivity are overcome with NaDiaProbes due to diamond’s intrinsic hardness and inertness. With imaging results frequently better than 20 nm, NaDiaProbes outperform diamond-coated silicon probes in image resolution. NaDiaProbes exhibit imaging performance comparable to standard SiN probes but with over 100x less wear rates.

Modes and Applications

NaDiaProbes have a chip geometry that allows use in most standard AFM tools. All NaDiaProbes have an aluminum reflective coating. NaDiaProbes can be used for the following AFM scanning modes:
- Conductive Microscopy
- Dynamic (Tapping) Mode
- Contact Mode

NaDiaProbes are excellent for the following applications:
- Electrically Conductive AFM (C-AFM)
- Oxidation Nanolithography
- Wear Resistance on Hard Substrate
- Long Tip Lifetime (Quality Control)

Made of UNCD

NaDiaProbes are made using ADT’s multicrystalline diamond, UNCD®, which has many of the outstanding characteristics of diamond such as hardness, modulus and fracture toughness. Because of UNCD’s hardness, the tips resist damage which enhances resolution and increases tip lifetimes. UNCD also has diamond’s exceptional surface properties of low friction and stiction for superior all-around imaging performance particularly on soft materials.
NaDiaProbes®—All-Diamond AFM Probes

Conductive Probes

Conductive NaDiaProbes are all-diamond probes with the cantilever and the probe tip made of electrically conductive UNCD® with a resistivity less than 1 ohm-cm. In addition to being electrically conductive, NaDiaProbes display superior wear properties and long lifetimes. Therefore, users who are frustrated with the delamination of conductive metal coatings will be pleased to know NaDiaProbes are conductive inside and out.

No coating — all conductive diamond.

UNCD Properties and NaDiaProbe Advantages

<table>
<thead>
<tr>
<th>UNCD Properties</th>
<th>NaDiaProbe Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme hardness and strength</td>
<td>Robust probes with excellent imaging resolution</td>
</tr>
<tr>
<td>High modulus and low dissipation</td>
<td>High frequency for dynamic imaging</td>
</tr>
<tr>
<td>Extremely wear resistant</td>
<td>Consistent imaging resolution when scanning hard surfaces</td>
</tr>
<tr>
<td></td>
<td>Holds dimensional tolerances for metrology and quality control applications</td>
</tr>
<tr>
<td>Low film stress</td>
<td>Cantilevers, regardless of length, maintain planar integrity</td>
</tr>
<tr>
<td>Chemically inert and stable</td>
<td>Resists build-up of debris when imaging soft materials</td>
</tr>
<tr>
<td></td>
<td>Resists fouling of biomaterials</td>
</tr>
</tbody>
</table>

Dynamic Mode

Dynamic (tapping) mode NaDiaProbes are designed for the most common use of AFM probes — tapping a surface. Due to diamond’s superior wear properties, these probes are designed for imaging hard surfaces, any application where long tip life is desirable (quality control processes) and applications where silicon tips may break easily. Therefore NaDiaProbes are also excellent for new AFM users.

Contact Mode

Contact mode NaDiaProbes are designed for imaging hard surfaces for many scans. Extremely wear resistant, NaDiaProbes last orders of magnitude longer than silicon nitride (SiN) or silicon (Si) probes. Extremely durable, NaDiaProbes are also perfect for new users or applications where a Si tip may break easily.

For a complete list of NaDiaProbe specifications and ordering information, please visit www.thindiamond.com.